A graphical representation of Arrow's theorem

Kenryo Indo

Kanto Gakuen University

revised 12 Feb, 2007

(edited: 6, 27-30 Oct, 19-22 2007)

Aim of this slide

- Arrow's Social Welfare Function (SWF)
 - a function from the set of profiles of individual orderings into the set of social orderings satisfying the set of conditions which will be explained later.
- general impossibility theorem (Arrow, 1963).
 - Kenneth J. Arrow has developed the mathematical model of social choice and proved that dictatorship is unavoidable under a set of seemingly moderate conditions (i.e., the general impossibility theorem).
 - In this slide I will provide a graphical proof for the impossibility theorem under linear orderings for 2-agent and 3-alternative cases. It can be intuitively understood, however, without loss of rigor.

Social choice theory

- Social choice problem (eg., voting/auction/...)
 - Alternatives (ex., candidates/commodities/...)
 - Agents (ex., voters/bidders/...)
 - Agent's possible preferences (ex., complete, transitive orderings)
 - A 'profile' is a tuple of each agent's preference.
 - Social decision rule (ex,. Condorcet rule/SPA/...)

Conditions of Arrow's SWF

- (T) Preference of each individual, or the society as a whole, is modeled as a linear (or weak) ordering, i.e., transitive, complete, asymmetric (or reflexive) binary relations on alternatives.
- (U) Unrestricted domain. Any profile (i.e., a combination of orderings of all agents) are possible.
- (IIA), (P), (ND) => next slide

Conditions of Arrow's SWF(2)

- (T), (U) => preceding slide
- (IIA) Independence of irrelevant alternatives. SWF is binary decomposable for each pair of alternative.
- (P) Pareto condition. Unanimity enforces the social decision.
- (ND) No-dictator. There is no unique agent who's ordering always to be a social ordering.

Arrow's theorem

- Theorem (Arrow, 1951/1963)
 - Let a model of n-agent and m-alternative, m>=3. And assume conditions U and T.
 - Then the set of conditions P, IIA, and ND for the SWF are inconsistent.
- Corollary

P and IIA implies dictatorship (D).

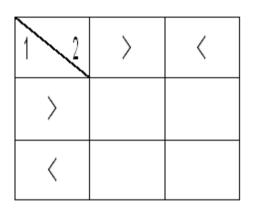
Observation

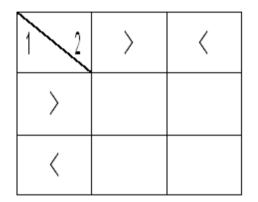
Two dictatorial rules satisfy all these conditions. So, D is equivalent to P and IIA assuming U and T.

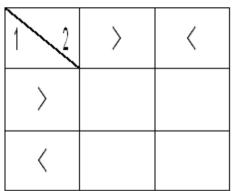
Binary decomposition which naturally represents the IIA condition

(a, b)

(b, c)





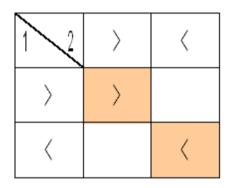


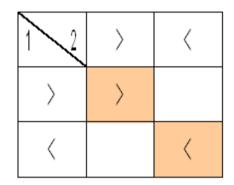
For each pair (x, y), > :- x is preferred to y < :- y is preferred to x

The weak Pareto condition (unanimity)

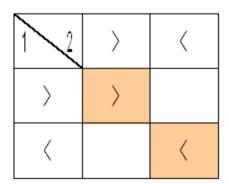
(a, b)

(b, c)



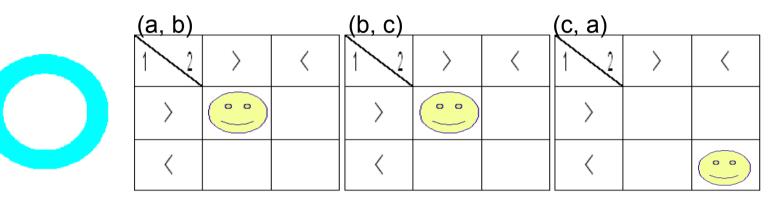


(c, a)

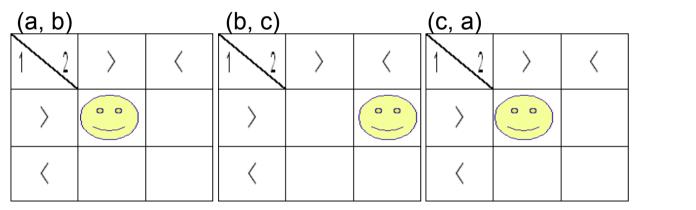


:- x is preferred to y
:- y is preferred to x
: By Pareto condition

Profiles and the transitivity of individual orderings



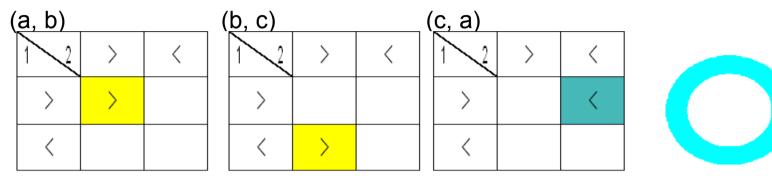
Three smiles arranged by ones for each tables represent a possible profile, 1: (a>b,b>c,c<a) and 2:(a>b,b>c,c<a), a tuple of (transitive) orderings of two agents.



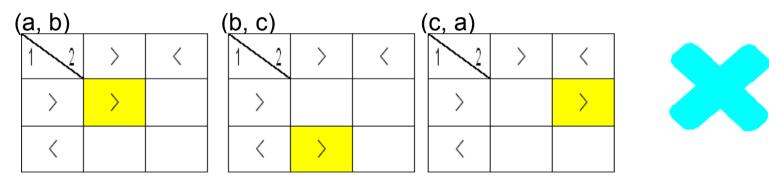
This is NOT a profile, because the ordering of row agent, 1: (a>b,b>c,c>a), is a cyclic relation, and so is intransitive.

A graphical representation of Arrow's theorem

Condition T prohibits each profile from being unilaterally directed



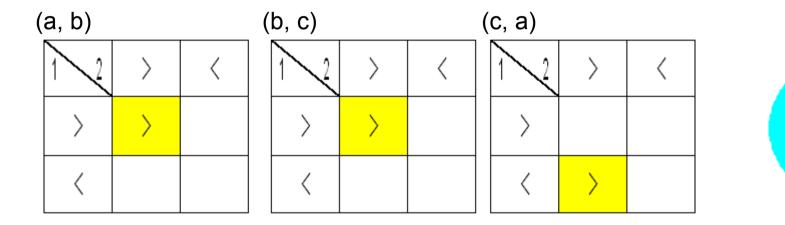
This can be seen as an SWF value assigned for a profile.



This can NOT be seen as a value of an SWF, because it consists a cyclic social orderings for the profile, and so is intransitive.

A graphical representation of Arrow's theorem

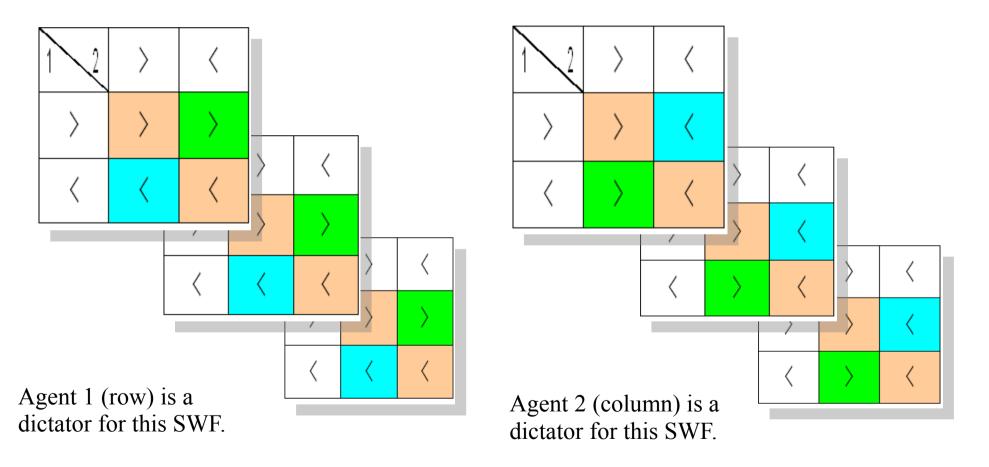
Condition T prohibits each profile from being unilaterally directed (2)



This does not violate Condition T because this is not a profile.

Two dictatorial rules

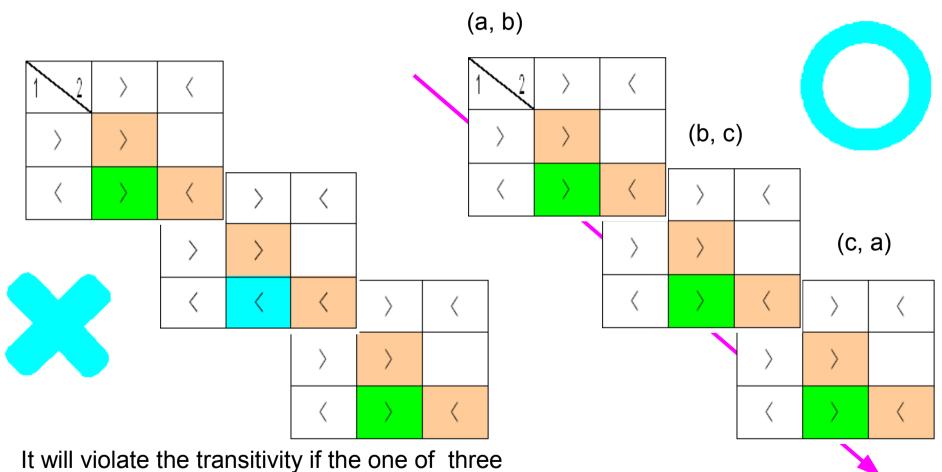
The dictatorial SWFs are clearly satisfies transitivity as well as other conditions of Arrow's theorem.



Conditions of SWF restated graphically

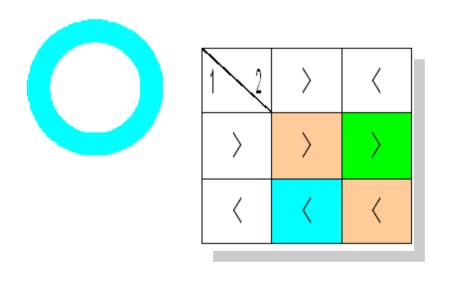
- (T & U) Individual ordering can not be selected within a single row (or a column) for each table. For each profile, which is a combination of such individual orderings, SWF should assign non-unilateral directions for each profile.
- (IIA) Profiles and SWF are represented by the three tables which are slices of the SWF with respect to directed pairs.
- (P) Diagonal elements of each table has a value which is same as the row and the column.
- (ND) There is a table which is not a simple duplications either of a row or of a column.

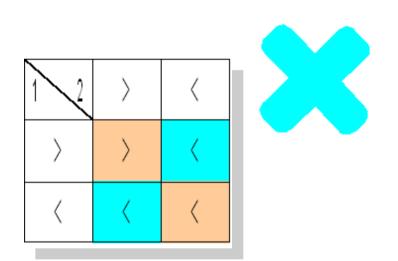
Condition T requires all tables to have a same single direction pushing through each non-diagonal cell (lemma 1)



tables replaced with the above one.

Condition T implies that different non-diagonal elements should not be unilateral for each table (lemma 2)





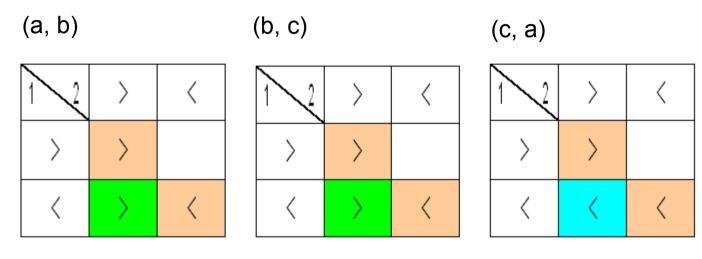
You can not burn the candle at the both ends. It can be proved that it violates the transitivity!

Proof of the theorem

- Dictatorial rules clearly satisfies the conditions of SWF and above two lemmas.
- Obviously, lemma 1 and lemma 2 together complete a proof of the dictatorial result (and so of the impossibility theorem).

Proof (lemma 1)

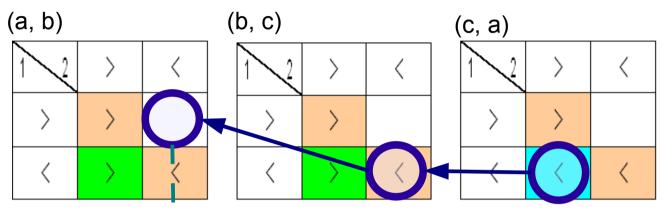
I insist that we can suppose the following pattern of the SWF without loss of the generality. Then, I will prove that it goes to violate the transitivity.



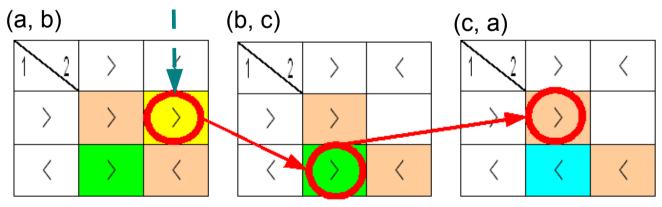
(next slide)

Proof (lemma 1) continued

Let us pick up a profile ((>,<,<)). Then the value of the SWF must be a>b in order to satisfy Condition T.



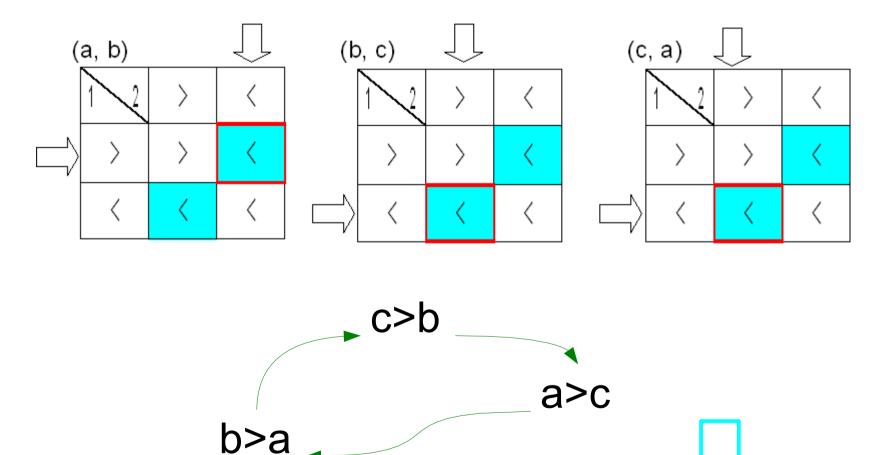
However it contradicts Condition T because a profile can be selected as shown in the following figure which shows an intransitive social ordering.



A graphical representation of Arrow's theorem

Proof (lemma 2)

Suppose a profile (a>c>b, b>a>c). By lemma 1, it suffices to consider an SWF like as the following pattern. This pattern results in a cyclic relation, so it can not be a social ordering.



References

- K. J. Arrow (1951/1963). Social Choice and Individual Values, Yale University Press.
- A. Sen (1995). Rationality and social choice. American Economic Review 85(1):1-24.