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Abstract 

Social choice theory argues mathematical models and their logical consequences for group 

decision making based on individuals’ preference orderings axiomatically. The most basic results 

have been proved in this field are two impossibility results for group decision making. Arrow’s 

general (im)possibility theorem for preference aggregation procedures, i.e., there is no non-

dictatorial social welfare functions (SWFs), and the Gibbard-Satterthwaite theorem for the 

strategy-proof social choice functions (SCFs), i.e., any voting procedure which cannot be 

manipulated by any individual’s false report on his/her own preference ordering should be 

dictatorial. The above two classical results are proved for unrestricted domain, i.e., any 

combinations of individual orderings can never be prohibited. This paper shows that, there are 18 

non-dictatorial SWFs and 196 strategy-proof non-imposed SCFs by eliminating a double cyclical 6 

profiles, each of these profiles are considered to be minimal and sufficient to prove the Arrow-type 

dictatorship for every two-individual and three alternatives. While these profiles are used in the 

Arrow’s original proof, we may have a thorough experimentation eliminating subsets of a set of 

special 12 profiles which is sufficient to deduce a dictatorship. The automated proof, instead of 

pure mathematical proof, unveils fairly comprehensive pattern rules for SWFs in parallel with 

SCFs. 

Keywords: Arrow’s impossibility theorem, the Gibbard-Satterthwaite theorem, 

domain conditions, Prolog 

1. Introduction 

Social choice theory studies collective decision making occurs in any multi-agent 

situation by using axiomatic models for individual preference orderings (i.e., 

rankings) on which various types of collective decision rules may be defined. 

Computational techniques have been rarely explored for these axiomatic models 

except for some sorts of voting, partly because simulation methods are considered 

to be appropriate for qualitative models but not for qualitative ones. However, as 

we will demonstrate throughout this paper axiomatic modelling for the multi-

agent situations can be explored meaningfully if we utilize a popular logic 

programming. It is not only useful for proving theorems in the literature, but also 

helpful leads to find new results.  
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Kenneth J. Arrow’s general impossibility theorem is a fundamental result 

regarding social aggregation of individual orderings (Arrow 1951; Arrow 1963). 

Given a set of individuals and a set of finite alternatives, under some moderate 

conditions on permissible orderings of the individual and the society as a whole, a 

dictatorship is necessarily concluded. A social welfare function (SWF) is required 

to satisfy the following five axioms;  

(U) unrestricted individual orderings,  

(T) transitivity of aggregated orderings,  

(P) weak Pareto principle, or unanimity, 

(IIA) independence of irrelevant alternatives, 

(D) non-dictatorship. 

 Arrow proved that any aggregation rule which satisfies the first four axioms 

should be dictatorial, and therefore it is impossible to satisfy all the five axioms. 

Restricting permissible orderings for each individual, i.e., domain conditions 

(Gaertner 2001), may help to escape the society can from impossibilities. Many 

domain conditions are known. For example, value restriction, single-peakedness, 

single-cavedness, extreme restriction, and so on for pairwise-majority vote. Kalai 

and Muller (1977) proposed decomposability under an implication of decisiveness 

as the necessary and sufficient condition for existence of nondictatorial SWFs, 

paralleling the strategy-proof voting procedures, over common addmissible 

domains. Blau and Muller (1983) modified it for individual permissible domains. 

The saturated domains of Kalai, Muller, and Satterthwaite (1979) extend 

decomposability to economic environments. A a finer sufficient condition of 

dictatorial result is “free triple” proposed in the 1
st
 edition of Arrow’s book. The 

condition was criticized by Blau (1957) and then modified in the 2
nd

 edition. Kelly 

(1994) has elaborated this condition. Recently, Ozdemir and Sanver (2007) 

modified it and connected it to the saturated domains (and the decomposability) to 

graphically interpret the linear orderings.  

All the above conditions in the literature restrict the permissible set of 

orderings. Especially for the case of three alternatives, they can give only a coarse 

prediction at most. That is, if one the 6 orderings eliminated from the common 

admissible domain, there is a SWF (and a SCF) except for the cases of singleton 

set. And in this sense, the two axioms can be considered equivalent for every 

common admissible domains. However, this paper proposes finer conditions 

which restrict the permissible set of profiles as the inputs of collective decision 

making procedure, and clarify interrelationships of the two set of axioms for 

admissible set of profiles.  

Recently, computer scientists have been interested in social choice theory as 

the foundation of mechanism design for multiagent systems (Shoham et al 2008). 

Lin and Tang (2008; 2009) argued computer aided proofs of Arrow’s 

impossibility theorem and the Gibbard-Satterthwaite theorem. Computing the 

SWFs can be seen as a constraint satisfaction problem (CSP) and they alleged that 

it can be solved for two individuals and three alternatives by using SAT solver. 

They also alleged that the same problem can be proved by using Prolog without 

showing the program. Independently from them, Indo (2007) introduced a 

complete Prolog program which proves Arrow’s theorem and Wilson’s theorem 

for two-individual three alternatives under linear ordering (Wilson 1972). This 

approach has been extended and applied to Gibbard-Satterthwaite theorem, 

domain conditions, simple games, pairwise majority vote (Indo 2009).  

It is noteworthy that this program is also useful to investigate domain 

conditions in order to avoid the classical impossibilities. If we take a subset of 
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profiles instead of the universal domain, and there may be an aggregation rule that 

satisfies all the five axioms except for U, unrestricted domain. We will call such 

an aggregation rule a SWF restricted to a subset of profiles.  

Indeed, we can select double sets each of which is consists of 6 profiles: 

P1. (a > c > b, c > b > a),    

P2. (a > b > c, c > a > b),    

P3. (b > a > c, a > c > b),    

P4. (b > c > a, a > b > c),    

P5. (c > b > a, b > a > c),    

P6. (c > a > b, b > c > a),    

And Qks are profiles (r2, r1) such that Pk = (r1, r2), k = 1, …, 6. Note that these 

profiles can be cyclically generated. We can get Pk’s (and Q k’s) where k’ = ((k + 

1) mod 6) + 1 by sequentially reversing for a single pair for each k = 1, 2, 3, 4, 5, 

6. Each set of cyclical 6 profiles is respectively minimal in that it covers all the 

possible binary patterns of profiles and suffices to deduce a dictatorship under the 

axioms even if all the other 24 profiles remain, while Arrow’s impossibility 

theorem no longer true if both of the cyclical profiles are incomplete. Further, 

there are maximally 18 SWFs excluding the condition U when these 12 cyclical 

profiles are eliminated, as we will se in Section 4. 

These profiles are used in the Arrow’s original proof with a minor 

modification. However, in this paper a computational step is adopted instead of 

pure mathematics to prove the theorems. It is not an ad hoc computer simulation. 

Due to the nature of automated theorem proving (Robinson 1965; Chang & Lee 

1973), Prolog unveils comprehensive patterns for SWFs in parallel with strategy-

proof non-imposed SCFs for various elimination patterns for the 12 profiles. The 

programs in this paper have been tested using SWI-Prolog version 5.6.52 

distributed by swi-prolog.org (http://www.swi-prolog.org).  

2. Impossibility Theorems 

Given a set of individuals, N = {1, 2, …, n}, and a set of finite number of 

alternatives, A = {x, y, z, …}. A binary relation R on a set is a weak ordering of A 

if it is complete and transitive and a linear ordering if it is also antisymmtric. R is 

complete if for all x and y, either xRy or yRx. R is transitive if for all x, y, and z, if 

xRy and yRz then xRz. Indifference relation, which means xRy and yRx, is 

denoted by xIy. R is atisymmetric if for all x and y, if xIy then  x = y. Binary 

relation xPy stands for the strict part, i.e., xRy and not yRx. 

In this paper, linear ordering is assumed. Let a profile RN = (R1, R2, … , Rn) be 

a combination of the all individuals’ orderings.  

Definition. A social welfare function (SWF) is defined as a function of the set 

of all the permissible profiles to the set of social orderings. Ordering of the society 

as a whole, Rs, = f(RN), aggregated by a SWF should satisfy the following five 

conditions. 

(U)  The SWF is defined for every profile (i.e., unrestricted domain, or 

universal domain). 

(T) The  social ranking RS should be transitive. 

(P) For any pair of alternatives, x and y, if xRiy for every individual i then 

xRSy. 

(IIA) For any (x, y) a pair of alternatives if every individual keeps the ranking 

for this pair after her or his profile changes to RN' from RN then xRSy iff xRS'y. 
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An individual i is called a dictator if for any pair of alternatives, x and y, if 

xRiy then xRS y. 

(D) There is no dictator.  

A SWF called resolute if the social ordering is linear for every profile. We will 

abuse the notion of social welfare function when its domain is restricted to a 

subset of profiles, and therefore dropping the conditions U and D. 

Theorem (Arrow’s Impossibility Theorem). If there are one or more 

individuals, and more than two alternatives, then any social welfare function that 

satisfies U, T, P, and I is dictatorial.  

Definition. A (resolute) social choice function (SCF) is a function that selects a 

single alternative from each non-empty subset of alternatives (i.e., the agenda) for 

every permissible profile.  

A SCF is manipulable if there is an individual who can report a false ordering 

and thereby lead to more preferable outcome for herself/himself.  

(U’) A SCF is defined for every profile and the agenda is restricted to A. 

(S) A SCF is not manipulable (strategy-proofness, or non-manipulability) 

(CS) There is no alternative x such that x is never selected (as a single winner) 

for every profile and agenda. (citizens’ sovereignty, or non-imposition) 

A single individual such that her/his top rank alternative is always selected as a 

winner is called a dictator. A SCF is dictatorial if there is a dictator. 

Allan Gibbard and Mark Satterthwaite independently argued the closed 

relationship between non-manipulable voting rules to Arrow’s social welfare 

function using a framework of non-cooperative games.  

Theorem (The Gibbard-Satterthwaite Theorem). If there are one or more 

individuals, and more than two alternatives, then any (resolute) social choice 

function that satisfies U’, S, and C is dictatorial. 

Although the mutual derivation of the two impossibility results is well known, 

ambiguity about the notion of equivalence has been posed critically. As for the 

proof of these theorems the reader should refer Gibbard (1973), Satterthwaite 

(1975). Barbera (2001) and Taylor (2005) are also helpful.  

In the remaining part of this paper, we will focus on the case of two individuals 

and three alternatives. It is well known that the general case of these two 

impossibility theorems can be proved inductively based on this basic case. 

3. Logic Programs 

This section outlines some applications using the social choice logic programming 

(SCLP) a computational version of the axiomatic social choice theory (Indo 2007; 

Indo 2009). For two-individual three-alternative case, all the possible strategy-

proof social choice functions as well as social welfare functions given a subset of 

profiles easily generated by using a simple recursion. Thereby we can verify their 

interrelationships. 

A SWF (Social Welfare Function) is defined as a function from any 

permissible combination of individuals’ orderings, i.e., profiles, to an ordering of 

the society as a whole. The Prolog version of SWF can be coded as a simple 

recursion.  
swf([ ], [ ]). 

swf([P-S|F], [P|L]):-  

swf(F, L), 

r(S),  

pareto(P-S),  
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iia(P-S, F). 

Because of the axiom T, predicate r(S) represents a transitive ordering, while 

all the results explained in the next section assume linear valued. Its transitivity 

can be easily checked as follows: 
?- r(R), r([X,Z],R),r([Z,Y],R),  
\+ r([X,Y],R). 
false.  

The above line after a prompt ?- is a query such that “Is there any term 

simultaneously substitutable for variables R, X, Y, and Z such that these consist a 

violation of the transitive relation? Please show me examples, if possible.” The 

system’s answer false means that there is no such violation.  

Recursive construction in Prolog language is familiar to AI programmers in 

order to write a problem solving system. However, in order to generate SWFs, we 

can definitely take the set of all profiles on which the SWF is defined in the 

second argument of two-arity predicate swf /2. 
swf(F):- all_profiles(L), swf(F, L). 

Note that the above predicate swf /1 is intended to satisfy all the Arrow’s 

axioms except for (D). We use Prolog’s backtracking to generate all the possible 

aggregation rules. Further, we will think that the experimentally observed fact that 

every possible rule is dictatorial to be considered a proof of the impossibility 

theorem. Then, a proof of Arrow’s theorem by Prolog is given as follows: 
?- swf( F), ¥+ dict_swf( F). 
false. 

As long as both that Arrow’s theorem is right and that programs model the 

axioms appropriately, the theorem would be proved computationally after a time. 

This task completed in 4.0 seconds on my PC (Windows XP SP3, Celeron 1GHz), 

even if no special ideas of fast computing other than recursion. Indeed, it depends 

on sequences of the profile list L and fairly improves if the cyclic 6 profiles 

explained in the first section are at the last position of L. 

Note that weak ordering consists of 6 intermediate (composite) orderings 

regarding the same above sequence and a total indifferent ordering as well as 6 

these linear ones. These 12 profiles are minimal again for transitivity-valued SWF 

in accordance with the original definition.  

Similarly, a program in order to prove the Gibbard-Satterthwaite theorem may 

be written as follows:  
scf([P-A | F], [P | L]):-  

scf(F, L), 

x(A),  

¥+ manipulable(P–S, F, _). 

scf(F):-  

all_profiles(L),  

scf(F, L), 

non_imposed(F). 

Self-contained Prolog source code that can prove all the experimental results, 

which will be explained in the next section, are shown in Appendix. 

4. Experimental Results 

The experimental results are summarized in the following three tables. Table 1 

shows the number of restricted domains when the cyclical 12 profiles {P1,…, P6, 
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Q1,…, Q6} explained in Section 1 eliminated from the two-individual three-

alternative unrestricted domain. Columns of Table 1 represent numbers of 

eliminated profiles and rows numbers of possible linear-valued SWFs. There are 

2
12

 = 4096 patterns of elimination to be verified. Each cell designates the number 

of such restricted domains.  

 

-------------------------- 

 Table 1 aroud here 

-------------------------- 

 

Similarly, Table 2 shows the strategy-proof and non-imposed SCFs. Table 3 

represents the cross analysis between SWFs and SCFs. There are 18 (or 51 if 

transitive-valued) non-dictatorial SWFs, and 196 strategy-proof non-imposed 

SCFs, if both cyclical profiles have been eliminated completely. It is noteworthy 

that the number is maximal for SWFs, without regard to selection of all the other 

24 profiles, but not for SCFs.  

 

-------------------------- 

 Table 2 aroud here 

-------------------------- 

 

In the light of these data, the 12 cyclical profiles are considered minimal both 

for SWFs and SCFs in the following sense. 

� (Fact 1) The impossibility no longer occurs if more than half of the 12 

profiles have been eliminated. (See the left half of Table1 and Table 2.) 

� (Fact 2) The possibility may occur if either of two cyclical profiles {P1,…, 

P6} or {Q1,…, Q6} is complete. (See the row 3 column 10 of Table1 and 

Table 2.) 

Indeed, these are 18 adjacent and double profile pairs in the cyclical ordering 

(See test1 in Appendix). 

Mention should also be made of another cross analysis by transitive-valued 

SWFs similar to Table 3. Especially, their two columns 2 and 3 are of the same 

numbers. But the details are left to the leader. Intuitively, we find a somewhat 

obscure correlation in Table 3. 

 

-------------------------- 

 Table 3 aroud here 

-------------------------- 

 

� (Fact 3) Arrow’s axioms and the G-S axioms, except for U and U’, to be 

considered equivalent in that a dictatorial result can be proved under the 

former if and only if so does under the later. Table 3 shows that this is the 

case for 169 domains where both are true and 3897 domains both are false. 

However, there are 30 domains where there is no SWF but a non-dictatorial 

non-imposed SCF exist.  

Therefore, the two set of axioms have similar semantics in that each domain 

where the impossibility occurs is interpreted as a possible world (its accessibility 

relation may be defined in different ways, for example unilateral deviations from 

each profile, or reversions of one of the individuals orderings), but not quite 

equivalent. Additionally, if we substitute strategy-proofness by monotonicity, then 
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the experimental data pattern obtained is the same as Table 1. Therefore, as long 

as we eliminate a subset of the 12 cyclical profiles, SWF and monotone non-

imposed SCF are equivalent regarding number of possibilities for every restricted 

domain as a subset of profiles. However, even the equivalence in this sense is not 

true if the elimination beyond the cyclical profiles. 

5. Conclusions 

In this paper, patterns for SWFs in parallel with strategy-proof and non-

imposed SCFs for various elimination patterns for the cyclical 12 profiles to be 

considered minimal in order to prove the Arrow’s theorem for the 2-individual 3-

alternative linear ordering case. This also clarifies the notion of equivalence 

between the two set of axioms of Arrow’s impossibility theorem and the Gibbard-

Satterthwaite theorem when the permissible set of profiles are restricted. 
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lx([a,b,c]). 

x(X):- lx(A), member(X,A). 

% linear ordering 

rc(1, [a, c, b]). 

rc(2, [a, b, c]). 

rc(3, [b, a, c]). 

rc(4, [b, c, a]). 

rc(5, [c, b, a]). 

rc(6, [c, a, b]). 

% (weak) ordering additionally 

rc(K, A, []) :- rc(K, A). 

rc(7, [a, c, b], [b, c]). 

rc(8, [a, b, c], [b, a]). 

rc(9, [b, a, c], [c, a]). 

rc(10, [b, c, a], [c, b]). 

rc(11, [c, b, a], [a, b]). 

rc(12, [c, a, b], [a, c]). 

rc(13, [a, b, c], [c, b, a]). 

% an intransitive relation 

rc(0, [a, b, c], [c, a]). 

% numbering 

r(K):- rc(K,_,_), K > 0. 

p(K):- r(K), K < 7. 

% binary relation 

precede(X,Y,R):- 

append(_,[X|Z],R), member(Y,Z). 

r([X,Y],R):- 

rc(R,A,B),(precede(X,Y,A);precede(X,Y,B)). 

r([X, X], R):- r(R), x(X). 

i([X, Y], R):- r([X, Y], R), r([Y, X], R). 

p(XY, R):- r(XY, R), \+ i(XY, R). 

 

/* profile of ordering */ 

 

pp([R, Q]):- p(R), p(Q).  

agree( p, B, [R, Q]):- p(B,R), p(B,Q).  

agree( r, B, [R, Q]):- r(B,R), r(B,Q).  

agree( _, B, P):- \+ (member( R, P), r(B,R)). 

all_profiles(L):- findall( P, pp(P), L).  

 

/* SWF */ 

 

swf(F):- all_profiles(L), swf(F, L). 

swf([], []). 

swf([P-S|F], [P|L]):-  

swf(F, L), p(S), % originally, r(S). 

pareto(P-S), iia(P-S, F). 

pareto(P-S):-  

¥+ (agree(p, XY, P), \+ p(XY,S)). 

iia([P,Q]-S, F):- \+ ( 

   x(X), x(Y), member([U,V] - T, F), 

   agree(r, [X,Y], [P,U]), 
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   agree(r, [X,Y], [Q,V]), 

   \+ agree(r, [X,Y], [S,T])). 

dict_swf(J,F):- 

   nth1(J,[P,Q],R), 

   \+ (member([P,Q]-S,F), p(B,R), \+ p(B,S)). 

 

/* SCF */ 

 

scf(F):- all_profiles(L), scf(F, L), cs(F). 

scf([], []). 

scf([P-Z|F], [P|L]):- scf(F, L), x(Z),  

\+ manipulable(P-Z, F). 

cs(F):- \+ (x(X), \+ member(_-X, F)).  

non_imposed(F):- cs(F).  

manipulable([R,Q]-S, F):- member([P,Q]-T,F),  

(p([T,S],R); p([S,T],P)). 

manipulable([R,Q]-S, F):- member([R,W]-T,F),  

(p([T,S],Q); p([S,T],W)). 

best(X,Q):- x(X), \+ (x(Y), \+ r([X,Y],Q)). 

dict_scf(J,F):- nth1(J,[P,Q],R), 

\+ (member([P,Q]-X,F),\+ best(X,R)). 

 

/* tables */ 

 

fig(_):- nl,tab(12),p(K),write(K),fail. 

fig(F):-  

p(J), rc(J,P,_), nl, write(J:P),  

tab(1), p(K), fig_cell([J,K],F),fail. 

fig(_):- nl,write('--'). 

fig_cell(P,F):- member(P-S, F),!, write(S). 

fig_cell(_,_):- nl,write('-'). 

 

/* restricted domain */ 

 

:- dynamic r_admit/1. 

restricted_domain(L,N):- T=[1,2,3,4,5,6], 

nth1(N,T,_),select_n(L,T,N), 

abolish(r_admit/1),assert(r_admit(L)). 

select_n([],[],0). 

select_n([R|Q],[R|S],A):-  

select_n(Q,S,B), A is B + 1. 

select_n(Q,[_|S],B):- select_n(Q,S,B). 

 

/* the 12 cyclical profiles */ 

 

ppc([J,K]):-  rc(K, _,_), K < 7, J is (K + 3) mod 13 + 1. 

ppc6(C):- findall(P,ppc(P),C).  

ppc6r(C):- findall([Q,P],ppc([P,Q]),C).  

ppc12(C):- ppc6(A),ppc6r(B),append(A,B,C). 

 

/* verification */ 
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test1:- all_profiles(L),ppc6(C),ppc6r(D), 

nth1(K,C,V),nl,write([K]),tab(1), 

nth1(J,D,W),subtract(L,[V,W],H), 

swf(F,H),\+ dict_swf(_,F), write(J; ' '), 

fail. 

 

:- dynamic test2_data/4. 

 

test2:- all_profiles(L),  

ppc12(B), nth0(N,[_|B],_), M is N -1, 

test2_stat(swf,M), 

select_n(C,B,N), subtract(L,C,U), 

findall(1,swf(_,U),H), length(H,I), 

findall(1,(scf(_,U),cs(F)),G),length(G,J), 

assert( test2_data(N,C,I,J) ), 

fail. 

test2. 

 

test2_stat(F,K):- 

ppc12(B),nth0(K,[_|B],_), 

member(F, [swf,scf]),  

nl,write([elim:K]),tab(1), 

test2_stat(F,K,I,D), 

bagof(1,D,W),length(W,S), 

write(I-S;' '), 

fail. 

test2_stat(_,_). 

 

test2_stat(swf,K,I,C^J^test2_data(K,C,I,J)). 

test2_stat(scf,K,J,C^I^test2_data(K,C,I,J)). 

 

test2_cross:- 

setof(J,K^C^I^test2_data(K,C,I,J),L), 

member(J,L),nl,write([J]),tab(1), 

bagof(1,C^K^test2_data(K,C,I,J),W), 

length(W,S),write(I-S;' '), 

fail. 

test2_cross. 

 

/* demo */ 

 

?- test1. 

[1] 1; 2; 6; 

[2] 1; 2; 3; 

[3] 2; 3; 4; 

[4] 3; 4; 5; 

[5] 4; 5; 6; 

[6] 1; 5; 6; 

false. 

 

?- test2. 

[0] 2-1; 
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[1] 2-12; 

[2] 2-48; 3-18; 

[3] 2-76; 3-108; 4-36; 

[4] 2-48; 3-156; 4-225; 5-60; 6-6; 

[5] 2-12; 3-60; 4-228; 5-348; 6-120; 7-24; 

[6] 2-2; 4-54; 5-170; 6-390; 7-252; 8-50; 9-6; 

[7] 5-12; 6-60; 7-228; 8-348; 9-120; 10-24; 

[8] 8-48; 9-156; 10-225; 11-60; 12-6; 

[9] 11-76; 12-108; 13-36; 

[10] 14-48; 15-18; 

[11] 17-12; 

[12] 20-1; 

 

?- test3_stat(scf,_). 

 

[0] 2-1;  

[1] 2-12;  

[2] 2-48;  3-18;  

[3] 2-64;  3-120;  4-36;  

[4] 2-30;  3-114;  4-255;  5-90;  6-6;  

[5] 2-12;  4-144;  5-300;  6-252;  7-72;  8-12;  

[6] 2-2;  5-62;  6-150;  7-294;  8-242;  9-78;  10-72;  12-18;  13-6;  

[7] 6-12;  8-120;  9-132;  10-192;  11-48;  12-108;  13-48;  14-72;  15-12;  16-24;  

19-24;  

[8] 10-18;  11-36;  12-57;  13-30;  14-36;  15-36;  16-69;  17-36;  18-72;  19-12;  

20-12;  22-36;  25-30;  28-3;  29-6;  30-6;  

[9] 14-4;  17-12;  20-36;  21-12;  22-36;  23-12;  26-12;  28-24;  31-24;  34-12;  35-

12;  38-12;  40-12;  

[10] 37-12;  38-6;  40-6;  41-12;  46-6;  48-12;  50-6;  74-6;  

[11] 88-12;  

[12] 196-1;  

true. 

 

?- test3_cross. 

 

[2] 2-169;  

[3] 2-24;  3-228;  

[4] 2-6;  3-84;  4-345;  

[5] 3-6;  4-144;  5-302;  

[6] 3-24;  4-24;  5-168;  6-204;  

[7] 5-36;  6-192;  7-138;  

[8] 4-24;  5-36;  6-78;  7-168;  8-68;  

[9] 5-12;  6-12;  7-60;  8-96;  9-30;  

[10] 5-36;  6-36;  7-18;  8-120;  9-60;  10-12;  

[11] 7-24;  8-12;  9-24;  10-24;  

[12] 6-30;  7-36;  8-30;  9-24;  10-48;  11-12;  12-3;  

[13] 4-6;  7-24;  8-24;  10-12;  11-18;  

[14] 7-24;  8-48;  10-30;  11-10;  

[15] 8-12;  9-24;  11-12;  

[16] 6-12;  8-18;  9-48;  10-12;  12-3;  

[17] 9-12;  10-24;  13-12;  

[18] 10-60;  11-12;  
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[19] 6-12;  7-12;  10-12;  

[20] 9-6;  10-6;  11-24;  12-12;  

[21] 12-12;  

[22] 8-12;  9-24;  12-24;  13-12;  

[23] 13-12;  

[25] 9-24;  10-6;  

[26] 12-12;  

[28] 10-3;  11-24;  

[29] 9-6;  

[30] 8-6;  

[31] 12-24;  

[34] 12-12;  

[35] 12-12;  

[37] 14-12;  

[38] 11-12;  15-6;  

[40] 11-12;  14-6;  

[41] 15-12;  

[46] 14-6;  

[48] 14-12;  

[50] 14-6;  

[74] 14-6;  

[88] 17-12;  

[196] 20-1;  

true. 
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Table 1: Number of restricted domains by the number of SWFs (row) and the number of remaining 

profiles in Pks and Qks (column). 

 

swf 0 1 2 3 4 5 6 7 8 9 10 11 12 total
2 2 12 48 76 48 12 1 199
3 60 156 108 18 342
4 54 228 225 36 543
5 12 170 348 60 590
6 60 390 120 6 576
7 228 252 24 504
8 48 348 50 446
9 156 120 6 282
10 225 24 249
11 76 60 136
12 108 6 114
13 36 36
14 48 48
15 18 18
17 12 12
20 1 1

total 1 12 66 220 495 792 924 792 495 220 66 12 1 4096
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Table 2: Number of restricted domains by the number of strategy-proof non-imposed SCFs (row) 

and the number of remaining profiles in Pks and Qks (column). 

 

sp 0 1 2 3 4 5 6 7 8 9 10 11 12 total
2 2 12 30 64 48 12 1 169
3 114 120 18 252
4 144 255 36 435
5 62 300 90 452
6 12 150 252 6 420
7 294 72 366
8 120 242 12 374
9 132 78 210
10 18 192 72 282
11 36 48 84
12 57 108 18 183
13 30 48 6 84
14 4 36 72 112
15 36 12 48
16 69 24 93
17 12 36 48
18 72 72
19 12 24 36
20 36 12 48
21 12 12
22 36 36 72
23 12 12
25 30 30
26 12 12
28 24 3 27
29 6 6
30 6 6
31 24 24
34 12 12
35 12 12
37 12 12
38 6 12 18
40 6 12 18
41 12 12
46 6 6
48 12 12
50 6 6
74 6 6
88 12 12
196 1 1

total 1 12 66 220 495 792 924 792 495 220 66 12 1 4096
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Table 3: Cross analysis between SWFs and strategy-proof non-imposed SCFs. 

 

swf
scf 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 20 total
2 169 169
3 24 228 252
4 6 84 345 435
5 6 144 302 452
6 24 24 168 204 420
7 36 192 138 366
8 24 36 78 168 68 374
9 12 12 60 96 30 210
10 36 36 18 120 60 12 282
11 24 12 24 24 84
12 30 36 30 24 48 12 3 183
13 6 24 24 12 18 84
14 24 48 30 10 112
15 12 24 12 48
16 12 18 48 12 3 93
17 12 24 12 48
18 60 12 72
19 12 12 12 36
20 6 6 24 12 48
21 12 12
22 12 24 24 12 72
23 12 12
25 24 6 30
26 12 12
28 3 24 27
29 6 6
30 6 6
31 24 24
34 12 12
35 12 12
37 12 12
38 12 6 18
40 12 6 18
41 12 12
46 6 6
48 12 12
50 6 6
74 6 6
88 12 12
196 1 1
total 199 342 543 590 576 504 446 282 249 136 114 36 48 18 12 1 4096


